按照以往。
在叶秋看到题目的一瞬间,只要有了思路之后,就会在大脑中进行飞快的演算。
在脑子验算了一遍,在草稿纸上面演算一遍,才会腾抄答案。
但是这一回,叶秋却改变了思路。
这一回的比赛实在是太重要了,也是决定叶秋名誉的一战。
同时,叶秋能否在国际上面彻底打出名声,这一回考试至关重要。
所以叶秋必须细心、细心、再细心!
他聚精会神,并没有在脑子中进行验算,而是在草稿纸上面把自己的答题思路先写了下来。
写完答题思路之后,便一步一步的演算。
点集演算过程十分的复杂。
顾名思义,点集就是数的集合。
点用(,y)表示,许多的点放在一起就组合成了点集。而{(1,1),(1,-5),(a,b),…,(-2,-3)}指(1,1),(1,-5),(a,b),…,(-2,-3)。
这些点放在一起组成的集合。
从形式上来说。
"点集是集合而不是函数"这句话是大致是对的。
函数是二元的数学关系,一般点集的定义需要借助集合来描述。
点集只是元素是点的集合(由点构成的"一元组"),不是关系,因此不是函数。
但如果把点集作为某个集合的子集考虑。
它的元素可以是以坐标形式表示的点,可以当作二元组而成为数学关系,因此又可能符合函数的定义,从而是函数。这时候点的表示形式(坐标――两组数)本身就蕴涵了函数的要素--自变量和值。
就连天才如叶秋,也不敢冒冒失失。
直到演算了三遍,每一遍的答案都准确无误之后,叶秋才会誊抄在试卷上面,。
第一题答完,叶秋抬头看着面前的钟表。
还好,过了四十分钟。
离考试结束,还有三小时零二十分钟的时间,可以全力钻研第二道题目。
而与此同时。
同一个考场的陆晚晚拿到试卷的一瞬间,先快速的浏览了一遍题目。
第二道题目很难,也算得上是上半场的压轴题目。
陆晚晚并没有过多的思考,而是直接把注意力转向了第一道题目。
点集。
这是陆晚晚最擅长的题目类型。
无可否认。
陆晚晚并不算是天才,甚至与叶秋这样耀眼的数学天才相比,她就像是旁边暗淡的星星。
不过,她在数学方面也算得上是有天赋。
而集合,就是她最喜欢做的题目的类型。
这种题目并不需要多么复杂的脑力思考,只需要重复的演算、重复的实验、便能够做出最正确的答案。
或许再解题的某一瞬间,需要灵机一动。
但是,陆晚晚的实力完全可以支撑。
她看向题目中的第一小问。
第一小问就如同在她面前的拦路虎。
糟糕!
陆晚晚竟然完全没有思路。
她又重复读了两三遍题目,还是没有任何的思路。
周围的同学纷纷下笔,写下自己的答案。
在这一刻,陆晚晚必须得承认有些慌张。
陆晚晚长呼一口气,脑袋微微往后转,余光便撇到了坐在最角落里面的叶秋。
叶秋正在拿起笔,聚精会神地写着什么东西。
他的身姿做得很直,像是挺拔的竹子一般,就连拿笔的弧度也呈现出最完美的画面。
在这一刻,陆晚晚的脑子中涌现出了一个名词。
黄金螺线。
黄金螺线是对数螺线的一种。